Effects of Color Light Emitting Diode (LED) on the Mycelial Growth, Fruiting Body Production, and Antioxidant Activity of Lentinus tigrinus

Eduardo J. Damaso Jr., Rich Milton R. Dulay, Sofronio P. Kalaw, Renato G. Reyes

Abstract


Lentinus tigrinus is an edible and medicinal mushroom and is being cultivated in fruiting bags consisting of rice straw and sawdust-based substrate. In the present work, we evaluated the influence of light emitting diode (LED) on the growth of mycelia, fruiting body production and antioxidant activities of L. tigrinus. The culture plates and fruiting bags were incubated and grown in an improvised LED chamber, and the DPPH radical scavenging activity and the total phenolic content of the harvested fruiting bodies were determined. Mycelia in blue LED recorded the widest mycelial diameter (88.83 mm) while fluorescent light showed the lowest mycelial growth (78.33 mm). However, L. tigrinus grown on the 8 parts of rice-straw and 2 parts of sawdust exposed under blue LED registered the shortest incubation period (12.33 days) and primordial initiation (17.67 days), highest number of fruiting bodies (27.67), yield (37.59 g), and biological efficiency (12.53%). Fruiting bodies harvested from the dark condition recorded the wides  t diameter of pileus and longest stipe. Moreover, among color LED, the highest phenolic content (25.04 mg gallic acid equivalent per g sample) and radical scavenging activity (61.29%) were noted in those grown under blue and red LEDs, respectively.


Keywords


color LED; Lentinus tigrinus; radical scavenging activity; total phenolic content

Full Text:

PDF

References


Börner, H.F., W. Busselt, T. Jüstel, H. Nikol, and C. R. Ronda. 2001. LED Lighting System for Producing White Light. U.S. Patent No. 6,234, 645 filed September 28, 1998, and issued September 15, 1999.

Dulay, R. M. R., S.M.B. Andres, A.F. C. Asuncion, A. S. Calalang, and A.P. Cumbe. 2017b. “Mycelial Biomass Production and Radical Scavenging Activity of Lentinus tigrinus in Submerged Cultivation Using Selected Tropical Fruit Juice.” International Journal of Biology, Pharmacy and Allied Sciences 6(11): 2154-2161.

Dulay, R. M. R., M. C.Arenas, S. P. Kalaw, R. G. Reyes, and E. C. Cabrera. 2014a. “Proximate Composition and Functionality of the Culinary-Medicinal Tiger Sawgill Mushroom, Lentinus tigrinus (Higher Basidiomycetes), from the Philippines.” International Journal of Medicinal Mushrooms 16(1): 85–94.

Dulay, R. M. R., L. A. Miranda, J. S. Malasaga, S. P. Kalaw, R. G. Reyes, C. T. Hou. 2017a. “Antioxidant and Antibacterial Activities of Acetonitrile and Hexane Extracts of Lentinus tigrinus and Pleurotus djamour.” Biocatalysis and Agricultural Biotechnology 9: 141-144.

Dulay, R. M. R., K. S. Flores, R. C. Tiniola, D.H.H. Marquez, A. G. Dela Cruz, S. P. Kalaw, and R. G. Reyes. 2015. “Mycelial Biomass Production and Antioxidant Activity of Lentinus tigrinus and Lentinus sajor-caju in Indigenous Liquid Culture.” Mycosphere 6(6): 659–666.

Dulay R. M. R., S. P. Kalaw, R. G. Reyes, and E. C. Cabrera. 2014b. “Embryo-Toxic And Teratogenic Effects of Philippine Strain of Lentinus tigrinus (Tiger Sawgill Basidiomycetes) Extract on Zebrafish (Danio Rerio) Embryos.” Annals of Biological Research 5(6): 9-14.

Dulay, RMR, S. P. Kalaw, R. G. Reyes, E. C. Cabrera, and N. F. Alfonso. 2012. “Optimization of Culture Conditions for Mycelial Growth and Basidiocarp Production of Lentinus tigrinus (Bull.) Fr.: A New Record of Domesticated Wild Edible Mushroom in the Philippines.” Philippine Agricultural Scientist 95(3): 278–285.

Jang, M. J., Y.H. Lee, Y.K. Cho, H. M. Koo, and T. S. Oh. 2015. “Growth Properties of Neolentinus lepideus According to the Light Environment.” Journal of Mushroom 13(2): 125-128.

Jang, M. J. , Y. H. Lee, Y. C. Ju, S.M. Kim, and H.M. Koo. 2013. “Effect of Color of Light Emitting Diode on Development of Fruit Body in Hypsizygus marmoreus.” Mycobiology 41(1): 63-66.

Jang, M. J., Y.H. Lee, J.H. Kim, and Y.C. Ju. 2011. Effect of Led Light on Primordium Formation, Morphological Properties, Ergosterol Content, and Antioxidant Activity of Fruit Body in Pleurotus eryngii.” The Korean Journal of Mycology 39(3): 175-179.

Kaori, S., J. Katsunori, S. Koji, N. Hidehiko, F. Norimitsu, O. Toshio, H. Junji, and M. Toshio. 2005. “Analysis on Genes Expressed During Photomorphogenesis the Fruiting Bodies in Pholiota nameko.” Journal of Society High Technology 17: 3-10.

Kim, D. H., H. J. Choi, W. S. Jo, and K. D. Moon. 2012. “Quality Characteristics of Pleurotus eryngii Cultivated with Different Wavelength of LED Lights.” Korean Journal of Food Preservation 19(3): 354-360.

Namba K., S. Inatomi, K. Mori, M. Shimosaka, and M. Okazaki. 2002. “Effect of LED Lights on Fruit-Body Production in Hypsizygus marmoreus.” Mushroom Science and Biotechnology 10: 141-146.

Saadatmand, S., R. Ahavari-Nejad, and M. N. Namin. 2014. “Effects of Light Irradiation on Spore Germination, Spawn Run, Protein Content, and Fruiting Body Formation in Pleurotus florida Singer. International Journal of Biosciences 4(9): 239-245.

Sunita, M., and S. Dhananjay. 2010. “Quantitative Analysis of Total Phenolic Content in Adhatoda vasica Nees Extracts.” International Journal of PharmTech Research 2(4): 2403-2406.

Wu, J. Y., H. B. Chen, M. J. Chen, S. C. Kan, C. J. Shieh, and Y.C. Liu. 2013. “Quantitative Analysis of LED Effects on Edible Mushroom Pleurotus eryngii in Solid and Submerged Cultures.” Journal of Chemical Technology and Biotechnology 88(10): 1841-1846.

Wu, X., W. Guan, R. Yan, J. Lei, L. Xu, and Z. Wang. 2016. “Effects of UV-C on Antioxidant Activity, Total Phenolics, and Main Phenolic Compounds of the Melanin Biosynthesis Pathway in Different Tissues of Button Mushroom.” Postharvest Biology and Technology 118: 51–58.




DOI: http://dx.doi.org/10.22137/ijst.2018.v3n2.02

Refbacks

  • There are currently no refbacks.