Significance of carbohydrate pathway in the maximization of biofuel production in Botryococcus sp: A Brief Review

Authors

  • Zubainatu Abba 1. Department of Technology and Heritage, Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Malaysia 2. Federal college of Education Yola, Adamawa State, Nigeria
  • Fatimah Zahrah Mohammad Department of Technology and Heritage, Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Malaysia
  • Hazel Monica Matias-Peralta Freshwater Aquaculture Center-College of Fisheries, Central Luzon State University, 3120 Science City of Munoz, Nueva Ecija, Philippines
  • Muhammad Muhammad Nimaya SPS Agaie, IBB University, Nigeria

DOI:

https://doi.org/10.22137/ijst.2020.v4n1.02

Keywords:

Biofuel, Botryococcus spp., Carbohydrate pathway

Abstract

Botryococcus spp. are green microalgae (Chlorophyta) known to contain an abundant amount of hydrocarbons, lipids and other bioactive constituents such as ether based lipids, fatty acids, polysaccharides and carotenoids which are used for commercial applications. In comparison with higher plants, after microalgae fix carbon dioxide (CO2), they have a greater ability to convert it into biomass and subsequently into products of interest. Some significant studies on the optimization of lipid biosynthetic pathways in microalgae for biofuel production are available since Botryococcus spp. have been known to contain a high amount of lipid in their cells. However, carbohydrates pathways, which are also precursors for biofuel production have been overlooked. This brief review aims to provide insights into the need to consider carbohydrates pathway in Botryococcus spp. to maximize biofuel production in microalgae.

Author Biography

Fatimah Zahrah Mohammad, Department of Technology and Heritage, Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Malaysia

Biology

References

Alam, F., Mobin, S., & Chowdhury, H. (2015). Third generation biofuel from Algae. Procedia Engineering, 105, 763-768.

Arulmurugan, P., Nagaraj, S., & Anand, N. (2010). Biodiversity of fresh water algae from temple tanks of Kerala. Recent Research in Science and Technology, 2(6).

Asadullah, M. (2014). Biomass gasification gas cleaning for downstream applications: A comparative critical review. Renewable and Sustainable Energy Reviews, 40, 118-132.

Ashokkumar, V., & Rengasamy, R. (2012). Mass culture of Botryococcus braunii Kutz. under open raceway pond for biofuel production. Bioresource technology, 104, 394-399.

Bai, F., Anderson, W., & Moo-Young, M. (2008). Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology advances, 26(1), 89-105.

Baroukh, C., Muñoz-Tamayo, R., Steyer, J.-P., & Bernard, O. (2015). A state of the art of metabolic networks of unicellular microalgae and cyanobacteria for biofuel production. Metabolic engineering, 30, 49-60.

Becker, E. W. (1994). Microalgae: biotechnology and microbiology (Vol. 10): Cambridge University Press.

Brányiková, I., Maršálková, B., Doucha, J., Brányik, T., Bišová, K., Zachleder, V., & Vítová, M. (2011). Microalgae—novel highly efficient starch producers. Biotechnol Bioeng, 108(4), 766-776.

Busi, M. V., Barchiesi, J., Martín, M., & Gomez‐Casati, D. F. (2014). Starch metabolism in green algae. Starch‐Stärke, 66(1-2), 28-40.

Chang, R. L., Ghamsari, L., Manichaikul, A., Hom, E. F., Balaji, S., Fu, W., . . . Salehi‐Ashtiani, K. (2011). Metabolic network reconstruction of Chlamydomonas offers insight into light‐driven algal metabolism. Molecular systems biology, 7(1), 518.

Chen, C.-Y., Zhao, X.-Q., Yen, H.-W., Ho, S.-H., Cheng, C.-L., Lee, D.-J., . . . Chang, J.-S. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1-10.

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology advances, 25(3), 294-306.

de Oliveira Rangel-Yagui, C., Danesi, E. D. G., de Carvalho, J. C. M., & Sato, S. (2004). Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Bioresource technology, 92(2), 133-141.

Deschamps, P., Haferkamp, I., Dauvillée, D., Haebel, S., Steup, M., Buléon, A., . . . Plancke, C. (2006). Nature of the periplastidial pathway of starch synthesis in the cryptophyte Guillardia theta. Eukaryotic cell, 5(6), 954-963.

Domozych, D., Ciancia, M., Fangel, J. U., Mikkelsen, M. D., Ulvskov, P., & Willats, W. G. (2012). The cell walls of green algae: a journey through evolution and diversity. Frontiers in plant science, 3, 82.

Dragone, G., Fernandes, B. D., Vicente, A. A., & Teixeira, J. A. (2010). Third generation biofuels from microalgae. Current research, technology and education topics in applied microbiology and microbial biotechnology, 2, 1355-1366.

Gani, P. (2017). Phycoremediation using Botryococcus sp. as nutrients removal in organic wastewaters coupled with hydrocarbon production. Universiti Tun Hussein Onn Malaysia.

Georgianna, D. R., & Mayfield, S. P. (2012). Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 488(7411), 329.

Goldemberg, J. (2007). Ethanol for a sustainable energy future. Science, 315(5813), 808-810.

Grima, E. M., Belarbi, E.-H., Fernández, F. A., Medina, A. R., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology advances, 20(7-8), 491-515.

Guiry, M. D. (2012). How many species of algae are there? Journal of phycology, 48(5), 1057-1063.

Halim, R., Danquah, M. K., & Webley, P. A. (2012). Extraction of oil from microalgae for biodiesel production: a review. Biotechnology advances, 30(3), 709-732.

Hanotu, J., Bandulasena, H., & Zimmerman, W. B. (2012). Microflotation performance for algal separation. Biotechnol Bioeng, 109(7), 1663-1673.

Harun, R., Danquah, M. K., & Forde, G. M. (2010a). Microalgal biomass as a fermentation feedstock for bioethanol production. Journal of chemical technology and biotechnology, 85(2), 199-203.

Harun, R., Danquah, M. K., & Forde, G. M. (2010b). Microalgal biomass as a fermentation feedstock for bioethanol production. Journal of Chemical Technology & Biotechnology, 85(2), 199-203.

Hegedűs, A., Mocan, A., Barbu-Tudoran, L., Coman, C., Drugă, B., Sicora, C., & Dragoș, N. (2015). Morphological, biochemical, and phylogenetic assessments of eight Botryococcus terribilis strains collected from freshwaters of Transylvania. Journal of Applied Phycology, 27(2), 865-878.

Hellingwerf, K. J., & De Mattos, M. J. T. (2016). Process for producing an organic compound: Google Patents.

Himmel, M. E., Ding, S.-Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315(5813), 804-807.

Ho, S.-H., Chen, C.-Y., & Chang, J.-S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource technology, 113, 244-252.

Ho, S.-H., Chen, C.-Y., Lee, D.-J., & Chang, J.-S. (2011). Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnology advances, 29(2), 189-198.

Hossain, S. Z. (2019). Biochemical Conversion of Microalgae Biomass into Biofuel. Chemical Engineering & Technology, 42(12), 2594-2607.

Huber, G. W., Chheda, J. N., Barrett, C. J., & Dumesic, J. A. (2005). Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science, 308(5727), 1446-1450.

Jeong, B.-r., Wu-Scharf, D., Zhang, C., & Cerutti, H. (2002). Suppressors of transcriptional transgenic silencing in Chlamydomonas are sensitive to DNA-damaging agents and reactivate transposable elements. Proceedings of the National Academy of Sciences, 99(2), 1076-1081.

John, R. P., Anisha, G., Nampoothiri, K. M., & Pandey, A. (2011). Micro and macroalgal biomass: a renewable source for bioethanol. Bioresource technology, 102(1), 186-193.

Keasling, J. D. (2010). Manufacturing molecules through metabolic engineering. Science, 330(6009), 1355-1358.

Ketheesan, B., & Nirmalakhandan, N. (2012). Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor. Bioresource technology, 108, 196-202.

Kimura, S., & Kondo, T. (2002). Recent progress in cellulose biosynthesis. Journal of plant research, 115(4), 297-302.

Kliphuis, A. M., Klok, A. J., Martens, D. E., Lamers, P. P., Janssen, M., & Wijffels, R. H. (2012). Metabolic modeling of Chlamydomonas reinhardtii: energy requirements for photoautotrophic growth and maintenance. Journal of Applied Phycology, 24(2), 253-266.

Komárek, J., & Marvan, P. (1992). Morphological differences in natural populations of the genus Botryococcus (Chlorophyceae). Archiv für Protistenkunde, 141(1-2), 65-100.

Lee, O. K., Kim, A. L., Seong, D. H., Lee, C. G., Jung, Y. T., Lee, J. W., & Lee, E. Y. (2013). Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta. Bioresource technology, 132, 197-201.

Li, Y., Han, D., Sommerfeld, M., & Hu, Q. (2011). Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp.(Chlorophyceae) under nitrogen-limited conditions. Bioresource technology, 102(1), 123-129.

Medipally, S. R., Yusoff, F. M., Banerjee, S., & Shariff, M. (2015). Microalgae as sustainable renewable energy feedstock for biofuel production. BioMed research international, 2015.

Metting, F. (1996). Biodiversity and application of microalgae. Journal of industrial microbiology, 17(5-6), 477-489.

Miller, R., Wu, G., Deshpande, R. R., Vieler, A., Gärtner, K., Li, X., . . . Liu, B. (2010). Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen-deprivation predict diversion of metabolism. Plant physiology, pp. 110.165159.

Moellering, E. R., & Benning, C. (2010). RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryotic cell, 9(1), 97-106.

Mohammed, K. (2013). Microalgal photobioreactors for carbon-efficient wastewater treatment.

Msanne, J., Xu, D., Konda, A. R., Casas-Mollano, J. A., Awada, T., Cahoon, E. B., & Cerutti, H. (2012). Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry, 75, 50-59.

Nahak, S., Nahak, G., Pradhan, I., & Sahu, R. (2011). Bioethanol from marine algae: a solution to global warming problem. J. Appl. Environ. Biol. Sci, 1(4), 74-80.

Prescott, G. (1978). How to know freshwater algae. 3rd Edn., Wes. C: Brown Company Publishers Dubugue, IOWA.

Qin, J. G., & Li, Y. (2006). Optimization of the growth environment of Botryococcus braunii strain CHN 357. Journal of Freshwater Ecology, 21(1), 169-176.

Radakovits, R., Jinkerson, R. E., Darzins, A., & Posewitz, M. C. (2010). Genetic engineering of algae for enhanced biofuel production. Eukaryotic cell, 9(4), 486-501.

Raheem, A., Azlina, W. W., Yap, Y. T., Danquah, M. K., & Harun, R. (2015). Thermochemical conversion of microalgal biomass for biofuel production. Renewable and Sustainable Energy Reviews, 49, 990-999.

Ramazanov, A., & Ramazanov, Z. (2006). Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL‐PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycological Research, 54(4), 255-259.

Ratledge, C., & Cohen, Z. (2008). Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technology, 20(7), 155-160.

Recht, B., Re, C., Tropp, J., & Bittorf, V. (2012a). Factoring nonnegative matrices with linear programs. Paper presented at the Advances in Neural Information Processing Systems.

Recht, L., Zarka, A., & Boussiba, S. (2012b). Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Applied microbiology and biotechnology, 94(6), 1495-1503.

Rismani-Yazdi, H., Haznedaroglu, B. Z., Bibby, K., & Peccia, J. (2011). Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC genomics, 12(1), 148.

Singh, P., Kumari, S., Guldhe, A., Misra, R., Rawat, I., & Bux, F. (2016). Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renewable and Sustainable Energy Reviews, 55, 1-16.

Stern, D. (2009). The Chlamydomonas sourcebook: organellar and metabolic processes (Vol. 2): Academic Press.

Van De Meene, A. M., Hohmann-Marriott, M. F., Vermaas, W. F., & Roberson, R. W. (2006). The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Archives of Microbiology, 184(5), 259-270.

Wang, B., Wang, J., Zhang, W., & Meldrum, D. R. (2012). Application of synthetic biology in cyanobacteria and algae. Frontiers in microbiology, 3, 344.

Wang, X., Liu, X., & Wang, G. (2011). Two‐stage Hydrolysis of Invasive Algal Feedstock for Ethanol Fermentation. Journal of integrative plant biology, 53(3), 246-252.

Wang, Z. T., Ullrich, N., Joo, S., Waffenschmidt, S., & Goodenough, U. (2009). Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryotic cell, 8(12), 1856-1868.

Xin, L., Hong-ying, H., Ke, G., & Ying-xue, S. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource technology, 101(14), 5494-5500.

Yamada, T., & Sakaguchi, K. (1982). Comparative studies onChlorella cell walls: Induction of protoplast formation. Archives of Microbiology, 132(1), 10-13.

Zhang, J., & Hu, B. (2012). A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresource technology, 114, 529-535.

Zhou, W., Min, M., Hu, B., Ma, X., Liu, Y., Wang, Q., . . . Ruan, R. (2013). Filamentous fungi assisted bio-flocculation: a novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells. Separation and Purification Technology, 107, 158-165.

Zhu, L., Wang, Z., Shu, Q., Takala, J., Hiltunen, E., Feng, P., & Yuan, Z. (2013). Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water research, 47(13), 4294-4302.

Zhu, S., Wang, Y., Huang, W., Xu, J., Wang, Z., Xu, J., & Yuan, Z. (2014). Enhanced accumulation of carbohydrate and starch in Chlorella zofingiensis induced by nitrogen starvation. Applied biochemistry and biotechnology, 174(7), 2435-2445.

Downloads

Published

2020-07-31