Energy Values of Corn and Rice Bran and Energy Levels for Ducks – Basis in Establishing Energy Requirement for Improved Philippine Mallard Duck

Authors

  • Sean R. Vidad Central Luzon State University (CLSU), Science City of Muńoz, Nueva Ecija and Mariano Marcos State University (MMSU), City of Batac, Ilocos Norte
  • Danilda H. Duran Philippine Carabao Center

DOI:

https://doi.org/10.22137/ijst.2022.v6n1.02

Keywords:

Philippine Mallard Duck, Energy Values, Corn, Rice Bran

Abstract

New breeds of Philippine Mallard Ducks (PMD) were developed to ensure the availability of outstanding stocks for egg production. Maximizing the potentials of these new breeds  can be achieved with sound nutrition. Energy is considered the most important and occupy big fraction in the diet of duck as it influences feed intake and proportion of other nutrients in the diet. Optimaldietary  energy levels for the new  breeds of PMD is yet to be established.. Determining the energy values of common and locally abundant basal feeds such as corn and rice bran for PMDwill serve as a basis in the inclusion of these feeds to duck’s diet. Ducks are considered more efficient in maximizing the energy values of corn (CO) and rice bran (RB) despite of the large proportion of non-starch polysaccharides of RB compared to chickens. Dietary energy levels have not been established for PMD unlike in Pekin ducks (PD) and some indigenous or country ducks. Fast growing PD tend to require a denser energy ranging from 3008 to 3284 kcal/kg compared to 2700 to 2950 kcal/kg for indigenous breeds and khaki Campbell (KC) for optimal performance. It has been found out that the PMD is closely more related to KC than PD. Hence, the possibility of requiring a lower dietary energy than PD.  The determination of energy values of CO and RB for PMD and establishment of optimal dietary energy level will facilitate the formulation of PMD specific diet. Thus, this condensed information will serve as concrete viewpoints in understanding bioenergetic dynamics of PMD.

References

Adeola, O. (2003). Energy values of feed ingredients for White Pekin ducks. Int. J. Poult. Sci, 2, 318-323.

Agatep, R. C., Lambio, A. L., Vega, R. S., Capitan, S. S., Mendioro, M. S., & Yebron, M. G. N. (2018). Microsatellite-based genetic diversity and relationship analyses of three genetic groups of domesticated mallard ducks (Anas platyrhynchos domesticus L.). Philippine Journal of Veterinary and Animal Sciences, 42(2), 102-111.

Amerah, A. M., Ravindran, V., Lentle, R. G., & Thomas, D. G. (2008). Influence of feed particle size on the performance, energy utilization, digestive tract development, and digesta parameters of broiler starters fed wheat-and corn-based diets. Poultry science, 87(11), 2320-2328.

Attia, Y. A., Qota, E. M. A., Aggoor, F. A. M., & Kies, A. K. (2003). Value of rice bran, its maximal utilisation and its upgrading by phytase and other enzymes and diet-formulation based on available amino acids in the diet for broilers. Archiv fur Geflugelkunde, 67(4), 157-166.

Barzegar, S., Wu, S. B., Choct, M., & Swick, R. A. (2020). Factors affecting energy metabolism and evaluating net energy of poultry feed. Poultry science, 99(1), 487-498.

Bartov, I. (1996). Effect of storage duration on the nutritional value of corn kernels for broiler chicks. Poultry science, 75(12), 1524-1527.

Begin, J. J. (1967). The relation of breed and sex of chickens to the utilization of energy. Poultry Science, 46(2), 379-383.

Borin, K., Lindberg, J. E., & Ogle, R. B. (2006). Digestibility and digestive organ development in indigenous and improved chickens and ducks fed diets with increasing inclusion levels of cassava leaf meal. Journal of Animal Physiology and Animal Nutrition, 90(5‐6), 230-237.

Dalólio, F. S., Silva, D. L., Albino, L. F. T., Nunes, R. V., Junior, V. R., Rostagno, H. S., ... & Pinheiro, S. R. F. (2019). Energy values and standardized ileal digestibility of amino acids in some feedstuffs for broilers. Semina: Ciências Agrárias, 40(6), 2651-2662.

Dai Xianjun, L. J., Delou, F., & Yaoming, W. (1999). Effect of metabolizable energy content on production level for Shaoxing duck:[J]. ACTA AGRICULTURAE ZHEJIANGENSIS, 2.

Dei, H. K. (2017). Assessment of maize (Zea mays) as feed resource for poultry. Poultry science, 1-32.

Diego, J. M. L., Martin, E. A., Barroga, A. J., & Velasco, V. V. (2021). Feeding programs for itik pinas (Anas platyrhynchos) during the growing phase and their influence on the subsequent egg production performance. Philippine Journal of Veterinary and Animal Sciences, 47(1), 29-38.

Dunaway, A.E. (2019). Metabolizable energy determination in broiler chickens. Retrieved from https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1114&context=animalsci _etds on September 12, 2021.

Fan, H. P., Xie, M., Wang, W. W., Hou, S. S., & Huang, W. (2008). Effects of dietary energy on growth performance and carcass quality of white growing Pekin ducks from two to six weeks of age. Poultry science, 87(6), 1162-1164.

Farrell, D. J. (1994). Utilization of rice bran in diets for domestic fowl and ducklings. World's Poultry Science Journal, 50(2), 115-131.

Gallardo, C., Dadalt, J. C., & Neto, M. T. (2020). Carbohydrases and phytase with rice bran, effects on amino acid digestibility and energy use in broiler chickens. animal, 14(3), 482-490.

Gross, M. C., McClain, S. E., Lancaster, J. D., Jacques, C. N., Davis, J. B., Simpson, J. W., ... & Hagy, H. M. (2020). Variation in true metabolizable energy among aquatic vegetation and ducks. The Journal of Wildlife Management, 84(4), 749-758.

Hoai, H. T., Kinh, L. V., Viet, T. Q., Sy, P. V., Hop, N. V., Oanh, D. K., & Yen, N. T. (2011). Determination of the metabolizable energy content of common feedstuffs in meat-type growing ducks. Animal feed science and technology, 170(1-2), 126-129.

Hong-min, G. S. M. S., Guo-rong, H. D. Q. S., & Hui-ying, Y. H. D. W. (2008). The effects of metabolizable energy and crude protein on laying performance of laying ducks reared in cage [J]. Acta Agriculturae Shanghai, 3.

Huynh, H., La, K., Phan, S., Dong, O., & Nguyen, Y. (2013). Metabolizable energy of feedstuffs in meat-type growing ducks determined by total or partial excreta collection methods. in 24 th Annual Australian Poultry Science Symposium (P. 136).

Jamroz, D. (2005). Comparative characteristic of gastrointestinal tract development and digestibility of nutrients in young chickens, ducks and geese. In Proceedings of the 15th European Symposium on poultry nutrition, Balatonfüred, Hungary, 25-29 September, 2005 (pp. 74-85). World's Poultry Science Association (WPSA).

Jamroz, D., Jakobsen, K., Knudsen, K. E. B., Wiliczkiewicz, A., & Orda, J. (2002). Digestibility and energy value of non-starch polysaccharides in young chickens, ducks and geese, fed diets containing high amounts of barley. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 131(3), 657-668.

Józefiak, D., Rutkowski, A., & Martin, S. A. (2004). Carbohydrate fermentation in the avian ceca: a review. Animal Feed Science and Technology, 113(1-4), 1-15.

Kim, J. H. (2014). Energy Metabolism and Protein Utilization in Chicken-A Review. Korean Journal of Poultry Science, 41(4), 313-322.

Kim, H. R., Kwon, H. J., Oh, S. T., Yun, J. G., Choi, Y. I., Choo, Y. K., ... & An, B. K. (2012). Effect of dietary metabolizable energy and crude protein concentrations on growth performance and carcass characteristics of Korean native ducks. Korean Journal of Poultry Science, 39(3), 167-175.

Lancaster, J. D., Yetter, A. P., Hagy, H. M., Gross, M. C., McClain, S. E., Simpson, J. W., & Jacques, C. N. (2018). True metabolizable energy of submersed aquatic vegetation in semi-permanent marshes for dabbling ducks in the Upper Midwest. Illinois Natural History Survey.

Lessire, M. (2020). Poultry-energy value. Retrieved from https://www.feedtables.com/content/poultry-0 on September 16, 2021.

Linden, J. (2015). Recent advances in the production, management and nutrition of intensively-farmed domestic ducks. The poultry site.

Liu, W., Yan, X. G., Yang, H. M., Zhang, X., Wu, B., Yang, P. L., & Ban, Z. B. (2020). Metabolizable and net energy values of corn stored for 3 years for laying hens. Poultry Science, 99(8), 3914-3920.

Martin, E. A., Rafael, E. J., Juan, J. J., Velasco, V. V., & Valdez, M. A. T. (2020). Feeding system and floor space on the growth, egg production, and reproductive performances of itik pinas kayumanggi (Anas platyrynchos L.) UNDER SEMI-CONFINEMENT SYSTEM. Philippine Journal of Veterinary and Animal Sciences, 46(1), 20-30.

Muztar, A. J., Slinger, S. J., & Burton, J. H. (1977). Metabolizable energy content of freshwater plants in chickens and ducks. Poultry Science, 56(6), 1893-1899.

Mtei, A. W., Abdollahi, M. R., Schreurs, N. M., & Ravindran, V. (2019). Impact of corn particle size on nutrient digestibility varies depending on bird type. Poultry science, 98(11), 5504-5513.

Owaga, J. (2020). Boosting energy metabolism in poultry (and pig) diets. Retrieved from https://www.thepoultrysite.com/articles/boosting-energy-metabolism-in-pig-and-poultry-diets on September 12, 2021.

Pesebre, I. E. (2014). Egg production performance of Philippine mallard ducks (Anas platyrhynchos L.) fed diets with different energy levels. Unpublished Undergraduate Thesis. University of the Philippines at Los Banos, Laguna.

Pinca, A. M., Bautista, H. N. F., Adiova, C. B., & Sangel, P. P. (2019). Comparative expression analysis of small intestine nutrient transporters sodium/glucose cotransporter 1 (SGLT1) and peptide transporter 1 (PepT1) between Itik Pinas (Anas platyrhynchos L.) and commercial layer chicken (Gallus gallus domesticus). Philipp J. Sci, 148, 433-439.

Poultry Hub Australia. Retrieved from https://www.poultryhub.org/all-about-poultry/species/duck on Septemebr 16, 2021.

Preetam, V. C., & Qudratullah, S. (2009). Influence of species on metabolizabile energy of poultry feedsuffs. Indian Journal of Poultry Science, 44(1), 31-35.

Ragland, D. A. R. R. Y. L., King, D. A. L. E., & Adeola, O. (1997). Determination of metabolizable energy contents of feed ingredients for ducks. Poultry Science, 76(9), 1287-1291.

Ruiz, B. (2016). Stabilized rice bran for poultry feeding. Retrieved from https://www.feedstrategy.com/poultry-nutrition/stabilized-rice-bran-for-poultry-feeding/ on September 16, 2021.

Shaheen, M., Ahmad, I., Anjum, F. M., Syed, Q. A., & Saeed, M. K. (2015). Effect of processed rice bran on growth performance of broiler chicks from Pakistan. Bulgarian Journal of Agricultural Science, 21(2), 440-445.

Siregar, A. P., & Farrell, D. J. (1980). A comparison of the energy and nitrogen metabolism of fed ducklings and chickens. British Poultry Science, 21(3), 213-227.

Siregar, A. P., Cumming, R. B., & Farrell, D. J. (1982). The nutrition of meat-type ducks. 3. The effects of fibre on biological performance and carcass characteristics. Australian Journal of Agricultural Research, 33(5), 877-886.

Scanes, C. G. (2015). Carbohydrate metabolism. In Sturkie's avian physiology (pp. 421-441). Academic Press.

Schubert, R., Richter, G., & Gruhn, K. (1982). Comparative investigations of the digestion performances of cairina, peking ducks and laying hens. Archiv Fur Tierernahrung-Archives Of Animal Nutrition, 32(7-8), 531-537.

Tavernier, A., Davail, S., Houssier, M., Bernadet, M. D., Ricaud, K., & Gontier, K. (2020). Inter genotype differences in expression of genes involved in glucose metabolism in the establishment of hepatic steatosis in Muscovy, Pekin and mule ducks. Molecular biology reports, 47(2), 1527-1533.

Thongwittaya, N., Pleusamran, P., Choktaworn, N., & Tasaki, I. (1992). Energy And Protein Requirements Of Khaki Campbell× Thai Native Growing Ducks. Asian-Australasian Journal of Animal Sciences, 5(2), 357-363.

Thongwittaya, N., and I. Tasaki. "Energy and protein requirements of khaki campbell× thai native laying ducks." Asian-Australasian Journal of Animal Sciences 5, no. 2 (1992): 365-368.

Tyagi, P. K., Shrivastav, A. K., Mandal, A. B., Tyagi, P. K., Elangovan, A. V., & Deo, C. (2008). The apparent metabolizable energy and feeding value of quality protein maize for broiler chicken. Indian Journal of Poultry Science, 43(2), 169-174.

Wen, Z. G., Rasolofomanana, T. J., Tang, J., Jiang, Y., Xie, M., Yang, P. L., & Hou, S. S. (2017). Effects of dietary energy and lysine levels on growth performance and carcass yields of Pekin ducks from hatch to 21 days of age. Poultry science, 96(9), 3361-3366.

Wickramasuriya, S. S., Yoo, J., Kim, J. C., & Heo, J. M. (2016). The apparent metabolizable energy requirement of male Korean native ducklings from hatch to 21 days of age. Poultry science, 95(1), 77-83.

Xia, W. G., Abouelezz, K. F. M., Fouad, A. M., Chen, W., Ruan, D., Wang, S., ... & Zheng, C. T. (2019). Productivity, reproductive performance, and fat deposition of laying duck breeders in response to concentrations of dietary energy and protein. Poultry science, 98(9), 3729-3738.

Xie, K., He, X., Hou, D. X., Zhang, B., & Song, Z. (2021). Evaluation of Nitrogen-Corrected Apparent Metabolizable Energy and Standardized Ileal Amino Acid Digestibility of Different Sources of Rice and Rice Milling Byproducts in Broilers. Animals, 11(7), 1894.

Xie, M., Zhao, J. N., Hou, S. S., & Huang, W. (2010). The apparent metabolizable energy requirement of White Pekin ducklings from hatch to 3 weeks of age. Animal feed science and technology, 157(1-2), 95-98.

Zeng, Q. F., Cherry, P., Doster, A., Murdoch, R., Adeola, O., & Applegate, T. J. (2015). Effect of dietary energy and protein content on growth and carcass traits of Pekin ducks. Poultry science, 94(3), 384-394.

Zhang, L., Zhao, F., Zhang, H., Bian, G. Z., Wang, Y. M., Yang, X., & Li, H. (2019). Validation of in vitro digestion using simulated small intestinal fluid with specific digestive activity to predict the metabolizable energy of feed ingredients for duck. Poultry science, 98(3), 1280-1287.

Zheng, A., Chang, W., Hou, S., Zhang, S., Cai, H., Chen, G., ... & Liu, G. (2014). Unraveling molecular mechanistic differences in liver metabolism between lean and fat lines of Pekin duck (Anas platyrhynchos domestica): a proteomic study. Journal of proteomics, 98, 271-288.

Zhao, F., Zhang, H. F., Hou, S. S., & Zhang, Z. Y. (2008). Predicting metabolizable energy of normal corn from its chemical composition in adult Pekin ducks. Poultry Science, 87(8), 1603-1608.

Zhao, F., Zhang, L., Mi, B. M., Zhang, H. F., Hou, S. S., & Zhang, Z. Y. (2014). Using a computer-controlled simulated digestion system to predict the energetic value of corn for ducks. Poultry science, 93(6), 1410-1420.

Zhou, Z., Wan, H. F., Li, Y., Chen, W., Qi, Z. L., Peng, P., & Peng, J. (2010). The influence of the amylopectin/amylose ratio in samples of corn on the true metabolizable energy value for ducks. Animal feed science and technology, 157(1-2), 99-103.

Downloads

Published

2022-02-28